4.6 Review

Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry

Journal

MOLECULES
Volume 23, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/molecules23040738

Keywords

vinylsulfonium; vinylsulfoxonium; sulfonium salts; sulfoxonium salts; oxosulfonium; ylides; conjugate addition; epoxide; cyclopropane; gamma-lactone

Funding

  1. National Science Foundation
  2. National Institutes of Health [CHE-1463728, R15GM107800]

Ask authors/readers for more resources

This review describes advances in the literature since 2000 in the area of reactions of vinylsulfonium and vinylsulfoxonium salts, with a particular emphasis on stereoselective examples. Although the chemistry of vinylsulfonium salts was first explored back in the 1950s, and that of vinylsulfoxonium salts in the early 1970s, there has been renewed interest in these compounds since the turn of the century. This has been largely due to an increased appreciation for the many synthetic possibilities associated with these valuable electrophiles. The development of improved routes to vinylsulfonium salts allowing for their in situ generation has played a part in accelerating their study. In general, reactions of the two sulfur salt classes follow a similar mechanistic pathway: initial conjugate addition of a nucleophile to the beta-position, followed by protonation of an ylide intermediate, and cyclization of tethered anion to afford monocyclic or bicyclic product (e.g., cyclopropane, aziridine, oxazole, oxazolidinone, gamma-lactam or gamma-lactone). Alternatively, reactions involve formation of an ylide intermediate followed by intramolecular Johnson-Corey-Chaykovsky reaction (epoxidation or cyclopropanation), and subsequent cyclization to afford the desired bicyclic product (e.g., fused bicyclic epoxide or cyclopropane).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available