4.7 Article

Identification of a Folate Receptor-Targeted Near-Infrared Molecular Contrast Agent to Localize Pulmonary Adenocarcinomas

Journal

MOLECULAR THERAPY
Volume 26, Issue 2, Pages 390-403

Publisher

CELL PRESS
DOI: 10.1016/j.ymthe.2017.10.016

Keywords

-

Funding

  1. NIH [R01 CA193556, F32 CA210409]
  2. American Philosophical Society
  3. NIH (NCI LRP award)
  4. Association for Academic Surgery

Ask authors/readers for more resources

Non-small cell lung cancer (NSCLC) is the number one cancer killer in the United States. Despite attempted curative surgical resection, nearly 40% of patients succumb to recurrent disease. High recurrence rates may be partially explained by data suggesting that 20% of NSCLC patients harbor synchronous disease that is missed during resection. In this report, we describe the use of a novel folate receptor-targeted near-infrared contrast agent (OTL38) to improve the intraoperative localization of NSCLC during pulmonary resection. Using optical phantoms, fluorescent imaging with OTL38 was associated with less autofluorescence and greater depth of detection compared to traditional optical contrast agents. Next, in in vitro and in vivo NSCLC models, OTL38 reliably localized NSCLC models in a folate receptor-dependent manner. Before testing intraoperative molecular imaging with OTL38 in humans, folate receptor-alpha expression was confirmed to be present in 86% of pulmonary adenocarcinomas upon histopathologic review of 100 human pulmonary resection specimens. Lastly, in a human feasibility study, intraoperative molecular imaging with OTL38 accurately identified 100% of pulmonary adenocarcinomas and allowed for identification of additional subcentimeter neoplastic processes in 30% of subjects. This technology may enhance the surgeon's ability to identify NSCLC during oncologic resection and potentially improve long-term outcomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available