4.4 Article

First-principles spectra of Au nanoparticles: from quantum to classical absorption

Journal

MOLECULAR PHYSICS
Volume 116, Issue 19-20, Pages 2506-2511

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268976.2018.1471235

Keywords

Time-dependent density functional theory; optical spectra; plasmons; stochastic methods and algorithms

Funding

  1. NSF Division of Materials Research [DMR/BSF-1611382]
  2. NSF Division of Chemistry [CHE-1465064]
  3. United States-Israel Binational Science Foundation [BSF 2015687]

Ask authors/readers for more resources

Absorption cross-section spectra for gold nanoparticles were calculated using fully quantum Stochastic Density Functional Theory and a classical Finite-Difference Time Domain Maxwell solver. Spectral shifts were monitored as a function of size (1.3-3.1 nm) and shape (octahedron, cubeoctahedron and truncated cube). Even though the classical approach is forced to fit the quantum time-dependent density functional theory at 3.1 nm, at smaller sizes there is a significant deviation as the classical theory is unable to account for peak splitting and spectral blueshifts even after quantum spectral corrections. We attribute the failure of classical methods at predicting these features to quantum effects and low density of states in small nanoparticles. Classically, plasmon resonances are modelled as collective conduction electron excitations, but at small nanoparticle size these excitations transition to few or even individual conductive electron excitations, as indicated by our results. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available