4.7 Article

Solid-State Characterization and Relative Formation Enthalpies To Evaluate Stability of Cocrystals of an Antidiabetic Drug

Journal

MOLECULAR PHARMACEUTICS
Volume 15, Issue 5, Pages 1901-1908

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.8b00061

Keywords

pharmaceutical cocrystals; solid-state characterization; nuclear magnetic resonance; formation enthalpies; physical stability

Ask authors/readers for more resources

The current study integrates formation enthalpy and traditional slurry experiments to quickly assess the physical stability of cocrystal drug substance candidates for their potential to support drug development. Cocrystals of an antidiabetic drug (GKA) with nicotinamide (NMA), vanillic acid (VLA), and ethyl vanillin (EVL) were prepared and characterized by powder X-ray diffractometry (PXRD), spectroscopic, and thermal techniques. The formation enthalpies of the cocrystals, and their physical mixtures (GKA + coformer) were measured by the differential scanning calorimetry (DSC) method reported by Zhang et al. [Cryst. Growth Des. 2012, 12 (8), 4090-4097]. The experimentally measured differences in the relative formation enthalpies obtained by integrating the heat flow of each cocrystal against the respective physical mixture were correlated to the physical stability of the cocrystals in the solid state. The relative formation enthalpies of all of the cocrystals studied suggest that the cocrystals are not physically stable at room temperature versus their physical mixtures. To further address relative stability, the cocrystals were slurried in 30% v/v aqueous ethanol, and it was observed that all of the cocrystals revert to GKA within 48 h at room temperature. The slurry experiments are consistent with the relative instability of the cocrystals with respect to their physical mixtures suggested by the DSC results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available