4.7 Article

pH and Heat Resistance of the Major Celery Allergen Api g l

Journal

MOLECULAR NUTRITION & FOOD RESEARCH
Volume 62, Issue 15, Pages -

Publisher

WILEY
DOI: 10.1002/mnfr.201700886

Keywords

celery allergen Api g l; heat treatment; IgE binding; pH treatment; PR-10 class folds

Ask authors/readers for more resources

Scope: The major celery allergen Api g 1 is a member of the pathogenesis-related 10 class protein family. This study aims to investigate the impact of heat and pH on the native protein conformation required for Immunoglobulin E (IgE) recognition. Methods and results: Spectroscopic methods, MS and IgE-binding analyses are used to study the effects of pH and thermal treatment on Api g 1.0101. Heat processing results in a loss of the native protein fold via denaturation, oligomerization, and precipitation along with a subsequent reduction of IgE recognition. The induced effects and timescales are strongly pH dependent. While Api g 1 refolds partially into an IgE-binding conformation at physiological pH, acidic pH treatment leads to the formation of structurally heat-resistant, IgE-reactive oligomers. Thermal processing in the presence of a celery matrix or at pH conditions close to the isoelectric point (pI = 4.63) of Api g 1.0101 results in almost instant precipitation. Conclusion: This study demonstrates that Api g 1.0101 is not intrinsically susceptible to heat treatment in vitro. However, the pH and the celery matrix strongly influence the stability of Api g 1.0101 and might be the main reasons for the observed temperature lability of this important food allergen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available