4.7 Article

Evaluating genomic signatures of the large X-effect during complex speciation

Journal

MOLECULAR ECOLOGY
Volume 27, Issue 19, Pages 3822-3830

Publisher

WILEY
DOI: 10.1111/mec.14777

Keywords

gene flow; Haldane's rule; large X-effect; sex chromosomes; speciation

Funding

  1. National Institute of General Medical Sciences [R01 GM123194]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM123194] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The ubiquity of the two rules of speciationHaldane's rule and the large X-effect-implies a general, special role for sex chromosomes in the evolution of intrinsic postzygotic reproductive isolation. The recent proliferation of genome-scale analyses has revealed two further general observations: (a) complex speciation involving some form of gene flow is not uncommon, and (b) sex chromosomes in male- and in female-heterogametic taxa tend to show elevated differentiation relative to autosomes. Together, these observations are consistent with speciation histories in which population genetic differentiation at autosomal loci is reduced by gene flow while natural selection against hybrid incompatibilities renders sex chromosomes relatively refractory to gene flow. Here, I summarize multilocus population genetic and population genomic evidence for greater differentiation on the X (or Z) vs. the autosomes and consider the possible causes. I review common population genetic circumstances involving no selection and/or no interspecific gene flow that are nevertheless expected to elevate differentiation on sex chromosomes relative to autosomes. I then review theory for why large X-effects exist for hybrid incompatibilities and, more generally, for loci mediating local adaptation. The observed levels of sex chromosome vs. autosomal differentiation, in many cases, appear consistent with simple explanations requiring neither large X-effects nor gene flow. Discerning signatures of large X-effects during complex speciation will therefore require analyses that go beyond chromosome-scale summaries of population genetic differentiation, explicitly test for differential introgression, and/or integrate experimental genetic data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available