4.7 Article

Functional variation in the gut microbiome of wild Drosophila populations

Journal

MOLECULAR ECOLOGY
Volume 27, Issue 13, Pages 2834-2845

Publisher

WILEY
DOI: 10.1111/mec.14728

Keywords

Drosophila; gut microbiome; metagenome; microbial biodiversity; mycophagous drosophilids; transcriptome

Funding

  1. National Science Foundation [BIO 1241099]
  2. Direct For Biological Sciences [1241099] Funding Source: National Science Foundation

Ask authors/readers for more resources

Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the -Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations, and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available