4.6 Article

Arsenic Trioxide and Sorafenib Induce Synthetic Lethality of FLT3-ITD Acute Myeloid Leukemia Cells

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 17, Issue 9, Pages 1871-1880

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-17-0298

Keywords

-

Categories

Funding

  1. Samuel Waxman Cancer Research Foundation

Ask authors/readers for more resources

Acute myeloid leukemia (AML) with Fms-related tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation is notoriously hard to treat. We identified two drugs that together form an effective combination therapy against FLT3-ITD AML. One of the drugs, Sorafenib, an inhibitor of FLT3-ITD and other kinase activity, produces an impressive but short-lived remission in FLT3-ITD AML patients. The second, arsenic trioxide (ATO), at therapeutically achievable concentrations, reduces the level of FLT3-ITD and Mcl-1 proteins, and induces apoptosis in leukemic cell lines and in primary cells expressing FLT3-ITD. We linked this relative sensitivity to ATO to low levels of reduced glutathione. While producing proapoptotic effects, ATO treatment also has an unwanted effect whereby it causes the accumulation of the phosphorylated (inactive) form of glycogen synthase kinase 3 beta (GSK3 beta), a kinase necessary for apoptosis. When ATO is combined with Sorafenib, GSK3 beta is activated, Mcl-1 is further reduced, and proapoptotic proteins Bak and Bax are activated. Mice xenografted with FLT3-ITD MOLM13 cell line treated with the Sorafenib/ATO combination have significantly improved survival. This combination has potential to improve the therapeutic outcome of FLT3-ITD-targeted therapy of AML patients. (C)2018 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available