4.5 Article

Autocrine Fibronectin Inhibits Breast Cancer Metastasis

Journal

MOLECULAR CANCER RESEARCH
Volume 16, Issue 10, Pages 1579-1589

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-18-0151

Keywords

-

Funding

  1. American Cancer Society [RSG-CSM130259]
  2. NIH [R01CA207751, R00CA198929]
  3. Purdue Center for Cancer Research via an NCI [P30CA023168]
  4. NIH

Ask authors/readers for more resources

Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are linked to metastasis via their ability to increase invasiveness and enhance tumor-initiating capacity. Growth factors, cytokines, and chemotherapies present in the tumor microenvironment (TME) are capable of inducing EMT, but the role of the extracellular matrix (ECM) in this process remains poorly understood. Here, a novel tessellated three-dimensional (3D) polymer scaffolding is used to produce a fibrillar fibronectin matrix that induces an EMT-like event that includes phosphorylation of STAT3 and requires expression of beta 1 integrin. Consistent with these findings, analysis of the METABRIC dataset strongly links high-level fibronectin (FN) expression to decreased patient survival. In contrast, in vitro analysis of the MCF-10A progression series indicated that intracellular FN expression was associated with nonmetastatic cells. Therefore, differential bioluminescent imaging was used to track the metastasis of isogenic epithelial and mesenchymal cells within heterogeneous tumors. Interestingly, mesenchymal tumor cells do not produce a FNmatrix and cannot complete themetastatic process, even when grown within a tumor containing epithelial cells. However, mesenchymal tumor cells form FN-containing cellular fibrils capable of supporting the growth and migration of metastatic-competent tumor cells. Importantly, depletion of FN allows mesenchymal tumor cells to regain epithelial characteristics and initiate in vivo tumor growth within a metastatic microenvironment. Implications: In contrast to the tumor-promoting functions of fibronectin within the ECM, these data suggest that autocrine fibronectin production inhibits the metastatic potential of mesenchymal tumor cells. (C) 2018 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available