4.2 Article

Inhibition of Histone Deacetylases Reverses Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through a Slug Mediated Mechanism

Journal

MOLECULAR BIOLOGY
Volume 52, Issue 3, Pages 406-413

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0026893318030111

Keywords

breast cancer; metastasis; E-cadherin; cell invasion; Slug; epithelial-mesenchymal transition; histone deacetylases

Funding

  1. Zanjan University of Medical Sciences

Ask authors/readers for more resources

High metastatic ability and poor clinical outcome are the most known clinical features of the triple- negative breast tumors. Given that the tumor cells undergoing epithelial-mesenchymal transition (EMT) often gain malignant and invasive features, we have investigated the possibility of EMT reversal in triple-negative breast cancer cells by targeting the epigenetic-modifying enzymatic complexes named histone deacetylases (HDACs) and examined the possible mechanism underlying the HDACs-based inversion in model MDA-MB-231 cells. Cells were treated with a maximal tolerable 200 nM concentrations of classical HDACs inhibitor Trichostatin A (TSA) for 48 h and afterwards the invasiveness and immigration of the cells were evaluated in TransWell Invasion Scratch Wound Healing assays. Then, in treated and control cells, quantitative real time-PCRreacions were performed for assessing the gene expression of EMT biomarkers E-cadherin, Vimentin and transcriptional factor Slug. After TSA treatment, the invasion and migration properties MDAMB- 231 cells significantly decreased, gene expression of E-cadherin was significantly up-regulated, while the levels of Slug and Vimentin encoding mRNAs were suppressed. We conclude that inhibition of HDACs in triple- negative breast cancer cells may lead to inversion of EMT and the decrease of invasiveness by down-regulating the gene expression of Slug. Since EMT is known as a pre-metastatic process, triple-negative breast tumors, the EMT reversal effects of HDACs inhibition may reduce tumor cell metastasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available