4.1 Article

Molecular and functional characterization of two malic enzymes from Leishmania parasites

Journal

MOLECULAR AND BIOCHEMICAL PARASITOLOGY
Volume 219, Issue -, Pages 67-76

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molbiopara.2017.11.001

Keywords

Leishmania; Malic enzymes; NADPH production; Redox metabolism

Funding

  1. Universidad de Buenos Aires (UBACYT) [20100100618]
  2. CONICET
  3. UBA
  4. CAPES (Coordenacao de Aperfeicoamento do Pessoal de Ensino Superior)

Ask authors/readers for more resources

Leishmania parasites cause a broad spectrum of clinical manifestations in humans and the available clinical treatments are far from satisfactory. Since these pathogens require large amounts of NADPH to maintain intracellular redox homeostasis, oxidoreductases that catalyze the production of NADPH are considered as potential drug targets against these diseases. In the sequenced genomes of most Leishmania spp. two putative malic enzymes (MEs) with an identity of about 55% have been identified. In this work, the ME from L. major (LmjF24.0770, Lmj_ME-70) and its less similar homolog from L. mexicana (LmxM.24.0761, Lmex_ME-61) were cloned and functionally characterized. Both MEs specifically catalyzed NADPH production, but only Lmex_ME-61 was activated by L-aspartate. Unlike the allosterically activated human ME, Lmex_ME-61 exhibited typical hyperbolic curves without any sign of cooperativity in the absence of L-aspartate. Moreover, Lmex_ME-61 and Lmj_ME-70 differ from higher eukaryotic homologs in that they display dimeric instead of tetrameric molecular organization. Homology modeling analysis showed that Lmex_ME-61 and Lmj_ME-70 notably differ in their surface charge distribution; this feature encompasses the coenzyme binding pockets as well. However, in both isozymes, the residues directly involved in the coenzyme binding exhibited a good degree of conservation. Besides, only Lmex_ME-61 and its closest homologs were immunodetected in cell-free extracts from L. mexicana, L. amazonensis and L. braziliensis promastigotes. Our findings provide a first glimpse into the biochemical properties of leishmanial MEs and suggest that MEs could be potentially related to the metabolic differences among the species of Leishmania parasites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available