4.4 Review

3D printed microfluidics and microelectronics

Journal

MICROELECTRONIC ENGINEERING
Volume 189, Issue -, Pages 52-68

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mee.2017.12.010

Keywords

Additive manufacturing; 3D printing; Microfluidics; Microelectronics; Lab-on-a-chip

Ask authors/readers for more resources

Submillimeter-scale domains offer wide-ranging benefits for chemical and biological fields, which have motivated researchers to develop a diversity of strategies for manufacturing integrated microfluidic systems. Historically, microfluidic device construction has predominantly relied on micromachining technologies that are rooted in the semiconductor and microelectromechanical systems (MEMS) industries. These methodologies have enabled microfluidic platforms to be fabricated with fully integrated microelectronics a critical requirement for applications such as electrophoresis and dielectrophoresis (DEP), surface acoustic wave (SAW) actuation, digital microfluidics (e.g., via electrowetting-on-dielectric (EWOD) phenomena), and on-chip electrochemical detection. Despite the distinguishing capabilities afforded by conventional microfabrication protocols, a number of inherent limitations have given rise to increasing interest in alternative approaches for microdevice construction in the form of additive manufacturing or three-dimensional (3D) printing. Here we review recent progress in the development of both 3D printed microfluidics and 3D printed microelectronics. We evaluate the distinctive benefits and constraints associated with emerging 3D printing technologies with respect to the fabrication of both microfluidic and microeledtronic systems. Lastly, we examine the potential use of 3D printing-based approaches for manufacturing microfluidic devices with integrated microelectronics. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available