4.7 Article

Colorimetric and visual detection of mercury(II) based on the suppression of the interaction of dithiothreitol with agar-stabilized silver-coated gold nanoparticles

Journal

MICROCHIMICA ACTA
Volume 185, Issue 7, Pages -

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-018-2899-y

Keywords

Gel probe; Visual detection; Core-shell nanoparticles; Thiophilicity; Thiol-Ag chemistry; Mercuric ion

Funding

  1. National Natural Science Foundation of China [21775073, 61605084]

Ask authors/readers for more resources

A colorimetric and visual method is described for the determination of mercury(II) ion. A gel consisting of agar-stabilized silver-coated gold nanoparticles (Au@Ag NPs) was prepared. The reaction with dithiothreitol (DTT) via thiol-Ag chemistry results in an orange to purple color change of the gel. However, in the presence of Hg(II), the reaction of DTT with the silver shells is suppressed due to the strong thiophilicity of Hg(II). The color of the gel changes from purple to red to orange in the presence of increasing concentrations of Hg(II). The Au@Ag NPs therefore are a viable optical probe for Hg(II) which can be detected in concentration as low as 78 nM via dual-wavelength ratiometric absorbance (A(390)/A(520)), and at 1 mu M levels with bare eyes. The use of agar as a support is mandatory to prevent the aggregation of the NPs and also improves selectivity. The method was applied to the analysis of spiked samples, and recoveries ranged between 96.3 and 104%. The assay is easy, inexpensive, and in our perception represents an attractive tool for on-site visual detection of Hg(II).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available