4.7 Article

Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots

Journal

MICROCHIMICA ACTA
Volume 185, Issue 3, Pages -

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-017-2656-7

Keywords

Biosensor; Differential pulse voltammetry; Electrochemical aptasensor; Electrochemical impedance spectroscopy; Nanocomposite

Funding

  1. Center of Excellence in Sensor and Green Chemistry of Isfahan University of Technology (IUT)
  2. Research Council of Isfahan University of Technology (IUT)
  3. Iranian Nanotechnology Initiative Council

Ask authors/readers for more resources

An aptamer-based method is described for electrochemical determination of lysozyme. A glassy carbon electrode was modified with a nanocomposite composed of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride), and carbon quantum dots. The composition of the nanocomposite (MWCNT/PDDA/CQD) warrants good electrical conductivity and a high surface-to-volume ratio. The lysozyme-binding aptamers were immobilized on the nanocomposite via covalent coupling between the amino groups of the aptamer and the carboxy groups of the nanocomposite. The modified electrode was characterized by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The use of this nanocomposite results in a considerable enhancement of the electrochemical signal and contributes to improving sensitivity. Hexacyanoferrate was used as an electrochemical probe to study the dependence of the peak current on lysozyme concentration. In the presence of lysozyme, the interaction of lysozyme with immobilized aptamer results in a decrease of the peak current, best measured at +0.15 V vs. Ag/AgCl. A plot of peak current changes versus the logarithm of the lysozyme concentration is linear in the 50 fmol L-1 to 10 nmol L-1 concentration range, with a 12.9 fmol L-1 detection limit (at an S/N ratio of 3). The method is highly reproducible, specific and sensitive, and the electrode has a rapid response. It was applied to the determination of lysozyme in egg white, serum, and urine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available