4.2 Article

Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method

Journal

MICROBIAL DRUG RESISTANCE
Volume 24, Issue 1, Pages 8-17

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/mdr.2016.0259

Keywords

homology-based method; Enterobacteriaceae; Shigella flexneri; drug targets; in silico

Funding

  1. Bioinformatics Lab
  2. School of Medicine
  3. Kerman University of Medical Sciences

Ask authors/readers for more resources

The Enterobacteriaceae is a large family of Gram-negative, facultative anaerobic, non-spore forming rod-shaped bacteria that includes harmless and pathogenic organisms. The emergence and development of drug resistance in Enterobacteriaceae is complicating the treatment of serious infections. The aim of this study is to predict and characterize putative drug targets in Enterobacteriaceae family employing a homology-based computational method. The final putative drug targets were qualitatively characterized via cellular function prediction, subcellular localization prediction, broad-spectrum, and druggability analyses. Of 6,327 analyzed proteins, 35 proteins were selected as final putative drug targets in Enterobacteriaceae family. These putative drug targets were involved in different vital pathways like metabolism, biosynthesis of macromolecule, and cell division. Predicted drug targets were also localized in the cytoplasm and cytoplasmic membrane of the pathogen that acts as antimicrobial or vaccine targets. Of 35 drug targets, 5 targets were druggable and 30 targets were not druggable and were predicted as novel drug targets, which should be further evaluated to develop new antimicrobial. Thirteen drug targets were considered as broad-spectrum targets. It is expected that results of our study could facilitate the production of novel antibacterial for efficient treatment of infections caused by Enterobacteriaceae pathogens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available