3.8 Proceedings Paper

Dynamic Fracture Toughness of Magnesium Alloy under Impact Loading Conditions

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.proeng.2013.02.082

Keywords

Dynamic fracture toughness; impact loading; Charpy impact test; AZ61 magnesium alloy

Ask authors/readers for more resources

In the present study, three-point bend impact experiments on AZ61 magnesium alloy were conducted using an instrumented impact testing machine by Charpy V notch in accordance to ASTM E24.03.03. This test method is to determine dynamic fracture toughness at sharp crack for five different thickness of 2, 4, 6, 8 and 10 mm. A sharp fatigue pre-crack was initiated and propagated to half of specimen width at a constant crack propagation rate of about 1 x 10(-8) m/cycle before the specimen was loaded by the impact force until the maximum force is reached and then rapid fracture occurred. The Charpy V notch test was conducted at an impact velocity of 3.85 m/s. The dynamics fracture toughness at sharp crack was determined from the force-displacement history of the load point obtained from measurements of input and reflected strain profiles on the incident specimen. The dynamic fracture toughness K-d values obtained for different thicknesses showed that K-d value decreased with increasing specimen thickness. Scanning electron microscopy was used to elucidate the micro and macro failure mechanism operation during the dynamic fracture event. In particular two micro-mechanisms of failure were of primary interest: (a) fatigue and rapid fracture surface and (b) the development of shear lips at the surface of the specimen follow by fracture. (C) 2013 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available