3.8 Proceedings Paper

Swift/T: Large-scale Application Composition via Distributed-memory Dataflow Processing

Publisher

IEEE
DOI: 10.1109/CCGrid.2013.99

Keywords

-

Funding

  1. U.S. DOE Office of Science [DE-AC02-06CH11357, FWP-57810]
  2. National Science Foundation

Ask authors/readers for more resources

Many scientific applications are conceptually built up from independent component tasks as a parameter study, optimization, or other search. Large batches of these tasks may be executed on high-end computing systems; however, the coordination of the independent processes, their data, and their data dependencies is a significant scalability challenge. Many problems must be addressed, including load balancing, data distribution, notifications, concurrent programming, and linking to existing codes. In this work, we present Swift/T, a programming language and runtime that enables the rapid development of highly concurrent, task-parallel applications. Swift/T is composed of several enabling technologies to address scalability challenges, offers a high-level optimizing compiler for user programming and debugging, and provides tools for binding user code in C/C++/Fortran into a logical script. In this work, we describe the Swift/T solution and present scaling results from the IBM Blue Gene/P and Blue Gene/Q.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available