4.3 Article Proceedings Paper

Boiling Heat Transfer and Pressure Drop of a Refrigerant R32 Flowing in a Small Horizontal Tube

Journal

HEAT TRANSFER ENGINEERING
Volume 37, Issue 7-8, Pages 668-678

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01457632.2015.1067057

Keywords

-

Ask authors/readers for more resources

In this study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a low global warming potential refrigerant R32 flowing in a horizontal copper circular tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small-diameter tubes or minichannels for air conditioning systems. Axially local heat transfer coefficients were measured in the range of mass fluxes from 30 to 400 kg/(m(2)s), qualities from 0.05 to 1.0, and heat fluxes from 2 to 24 kW/m(2) at the saturation temperature of 10 degrees C. Pressure drops were also measured in the rage of mass fluxes from 30 to 400 kg/(m(2)s) and qualities from 0.05 to 0.9 at the saturation temperature of 10 degrees C under adiabatic condition. In addition, two-phase flow patterns were observed through a sight glass fixed at the tube exit with a digital camera. The characteristics of boiling heat transfer and pressure drop were clarified based on the measurements and the comparison with data of R410A obtained previously. Also, measured heat transfer coefficients were compared with two existing correlations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available