4.7 Article

A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 102, Issue -, Pages 278-297

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2017.09.026

Keywords

Intelligent fault diagnosis; Rolling bearings; Ensemble deep auto-encoders; Activation functions; Combination strategy

Funding

  1. National Natural Science Foundation of China [51475368]
  2. Shanghai Engineering Research Center of Civil Aircraft Health Monitoring Foundation of China [GCZX-2015-02]
  3. Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University [CX201710]

Ask authors/readers for more resources

Automatic and accurate identification of rolling bearings fault categories, especially for the fault severities and fault orientations, is still a major challenge in rotating machinery fault diagnosis. In this paper, a novel method called ensemble deep auto-encoders (EDAEs) is proposed for intelligent fault diagnosis of rolling bearings. Firstly, different activation functions are employed as the hidden functions to design a series of auto-encoders (AEs) with different characteristics. Secondly, EDAEs are constructed with various auto-encoders for unsupervised feature learning from the measured vibration signals. Finally, a combination strategy is designed to ensure accurate and stable diagnosis results. The proposed method is applied to analyze the experimental bearing vibration signals. The results confirm that the proposed method can get rid of the dependence on manual feature extraction and overcome the limitations of individual deep learning models, which is more effective than the existing intelligent diagnosis methods. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available