4.6 Article

Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases

Journal

MATRIX BIOLOGY
Volume 65, Issue -, Pages 30-44

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matbio.2017.06.004

Keywords

-

Funding

  1. Canadian Institutes of Health Research Grants [MOP-8994, MOP 12866]
  2. Canada Research Chairs awards

Ask authors/readers for more resources

The natural aging process and various pathologies correlate with alterations in the composition and the structural and mechanical integrity of the connective tissue. Collagens represent the most abundant matrix proteins and provide for the overall stiffness and resilience of tissues. The structural changes of collagens and their susceptibility to degradation are associated with skin wrinkling, bone and cartilage deterioration, as well as cardiovascular and respiratory malfunctions. Here, matrix metalloproteinases (MMPs) are major contributors to tissue remodeling and collagen degradation. During aging, collagens are modified by mineralization, accumulation of advanced glycation end-products (AGEs), and the depletion of glycosaminoglycans (GAGs), which affect fiber stability and their susceptibility to MMP-mediated degradation. We found a reduced collagenolysis in mineralized and AGE-modified collagen fibers when compared to native fibrillar collagen. GAGs had no effect on MMP-mediated degradation of collagen. In general, MMP digestion led to a reduction in the mechanical strength of native and modified collagen fibers. Successive fiber degradation with MMPs and the cysteine-dependent collagenase, cathepsin K (CatK), resulted in their complete degradation. In contrast, MMP-generated fragments were not or only poorly cleaved by non-collagenolytic cathepsins such as cathepsin V (CatV). In conclusion, our data indicate that aging and disease-associated collagen modifications reduce tissue remodeling by MMPs and decrease the structural and mechanic integrity of collagen fibers, which both may exacerbate extracellular matrix pathology. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available