4.5 Article

Modeling host-seeking behavior of African malaria vector mosquitoes in the presence of long-lasting insecticidal nets

Journal

MATHEMATICAL BIOSCIENCES
Volume 295, Issue -, Pages 36-47

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mbs.2017.10.005

Keywords

Malaria control; Mosquito repellents; Long-lasting insecticidal nets; Agent-based modeling; Markov chain Monte Carlo parameter estimation

Funding

  1. European Union Seventh Framework Programme (FP7) [265660]
  2. AvecNet
  3. Center of Excellence in Inverse Problems of the Academy of Finland [284715]

Ask authors/readers for more resources

The efficiency of spatial repellents and long-lasting insecticide-treated nets (LLINs) is a key research topic in malaria control. Insecticidal nets reduce the mosquito-human contact rate and simultaneously decrease mosquito populations. However, LLINs demonstrate dissimilar efficiency against different species of malaria mosquitoes. Various factors have been proposed as an explanation, including differences in insecticide-induced mortality, flight characteristics, or persistence of attack. Here we present a discrete agent-based approach that enables the efficiency of LLINs, baited traps and Insecticide Residual Sprays (IRS) to be examined. The model is calibrated with hut-level experimental data to compare the efficiency of protection against two mosquito species: Anopheles gambiae and Anopheles arabiensis. We show that while such data does not allow an unambiguous identification of the details of how LLINs alter the vector behavior, the model calibrations quantify the overall impact of LLINs for the two different mosquito species. The simulations are generalized to community-scale scenarios that systematically demonstrate the lower efficiency of the LLINs in control of An. arabiensis compared to An. gambiae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available