4.7 Article

A unified constitutive model based on dislocation density for an Al-Zn-Mg-Cu alloy at time-variant hot deformation conditions

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2018.01.109

Keywords

Alloy; Constitutive model; Flow behavior; Deformation mechanism

Ask authors/readers for more resources

In order to study the flow behaviors of an Al-Zn-Mg-Cu alloy at elevated temperatures, uniaxial tensile tests were carried out in wide deformation temperature and strain rate ranges. The flow stress rapidly increases to a peak value and then slightly decreases with the increased strain, and the dynamic recovery (DRV) is the primary softening mechanism. A unified constitutive model based on dislocation density was developed. An iterative procedure was implemented into the developed model to describe the flow behaviors at time-variant deformation conditions (e.g. the strain rate is changed during hot deformation). The predicted flow stresses were in accord with the experimental results, suggesting that the flow behaviors of the studied Al alloy at elevated temperatures can be well reproduced by the developed model. Meanwhile, the variations of the product of the instantaneous work hardening (WH) rate and stress caused by dislocation evolution, the dislocation density changing rate, as well as the dislocation mean free path, were given to analyze the WH and DRV mechanisms of Al-Zn-Mg-Cu alloy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available