4.3 Article

Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2018.05.039

Keywords

Polycaprolactone; Gelatin; Silver nanoparticle; Electrospinning; Multi-coating; Wound dressing

Funding

  1. Office of Navy Research (ONR) [N62909-14-1-N011-P00001, N6290914PR00015/N00014]
  2. International University, Viet Nam National University Ho Chi Minh City [02-BME-2016/HDSV-QLKH]

Ask authors/readers for more resources

Bacterial infection and damage caused by dressing removal are two concerning problems which prolong the healing process in treatment of skin injuries. In this study, plasma treated electrospun polycaprolactone (PCL) scaffold was coated with silver nanoparticles (AgNPs) embedded in gelatin (Gel) by multi-immersion technique to optimize its antibacterial performance and reduce wound-scaffold adhesion. Water interaction test was used to examine the hydrophilization of PCL electrospun fibers after plasma treatment. Scanning Electron Microscopy (SEM) and weight calculation were employed to investigate the morphology and absorptive ability of the GelAg multi-coated PCL membrane (EsPCLGelAg). Antibacterial property of the membrane was evaluated using agar diffusion method against gram positive and gram negative bacteria. Mice model was also used to examine the efficiency of the membrane in healing process and its ability to prevent damage of newly formed tissue when peeling off. SEM results showed that the thickness of GelAg layer on EsPCL membrane increases correspondingly to the number of coating times. In vitro and in vivo data also demonstrated that the greater number of GelAg coating times, the more significant the antibacterial property of the membrane while not sticking to the wound site. These results suggest that multi-coating technique can be applied to optimize the antibacterial property of EsPCLGelAg scaffold and prevent removal-induced damage for wound dressing applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available