4.3 Article

Molecular insights to alkaline based bio-fabrication of silver nanoparticles for inverse cytotoxicity and enhanced antibacterial activity

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2018.07.037

Keywords

Nanotoxicology; Silver nanoparticles; Calotropis gigantea; Antibacterial; Cytotoxicity; in silica molecular dynamics

Ask authors/readers for more resources

High demand for silver nanoparticles due to their extensive applications in different field has raised need of ecofriendly green synthesis with determined biomedical effects. This study proposes a novel rapid controlled alkaline based green synthesis of antibacterial silver nanoparticles from Calotropis gigantea for reduced cytotoxic effects. Silver nanoparticles termed as FAg, FAg1N, and FAg5N were synthesized with the help of floral extract of Calotropis gigantea as reducing and capping agent in presence of UV light and NaOH for catalysis and were characterized for their physiochemical properties by FESEM, DLS, UV-Visible spectrophotometry and FTIR. Facile synthesized Silver nanoparticles FAg1N and FAg5N showed enhanced antibacterial effects than FAg with increased NaOH concentration. Cytotoxic effect was found to be reduced at optimized alkaline conditioned FAg1N than FAg and FAg5N. Molecular dynamics study depicted the significant role of configurational change in Calotropin at variable alkalinity for controlling the size and physiological properties of synthesized AgNPs. The mechanism of cytotoxicity was revealed as consequences of variability in the interaction of Sod1 and P53 proteins with AgNPs surface for oxidative stress induction and programmed cell death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available