4.7 Article

The Late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 96, Issue -, Pages 16-50

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2018.03.002

Keywords

Continental margin evolution; Quaternary geology; Clinoform; Sediment partitioning and prediction; Paleoenvironmental reconstruction; Sequence stratigraphy; Sea level changes; Last glacial maximum; Climate change effects

Funding

  1. ExxonMobil Upstream Research Company
  2. Flagship Project RITMARE-The Italian Research for the Sea
  3. European Union Project PROMESS-1 [EVR1-2001-41]

Ask authors/readers for more resources

Although fades and stratal geometries of continental margin successions can be defined in detail based on subsurface and outcrop studies, most studies lack the high-resolution age control needed to constrain the time scale of formation of such successions and infer their external forcing mechanisms. Our work on the Po River Lowstand Wedge (PRLW) indicates that deposition rates are surprisingly high with the entire 350-m-thick succession being deposited in less than 17,000 years, and with individual clinothems recording time periods ranging from 400 to 4700 years. The PRLW preserves a high-resolution record of stacked, deltaic shelf-edge clinothems deposited during the Last Glacial Maximum (31.8-14.4 ky BP) in the Adriatic basin (Mediterranean Sea). We investigated clinothem intemal geometry, stacking patterns, and facies distributions to infer the main controls on their growth by integrating seismic reflection data with seismic facies attributes and paleoenvironmental proxies. The stratigraphic framework of the shelf-edge clinothems was then related to major paleoenvironmental shifts during the last glacial cycle and driven by eustatic and climatic changes. Within the PRLW, we recognized three distinctive types of 100's-m-high shelf-edge clinothems, type A, type B and type C, each with diagnostic topset geometries, shelf-edge trajectories, and associated distal basin-fill deposits. These elemental clinothem types stack into two Clinothem Sets. Clinothem Set 1, with essentially flat to slightly descending shelf-edge trajectory, is composed of stacked types A and B clinothems, and records the direct influence of river flux leading to dysoxic conditions on the bottom of the basin. In particular, clinothem accumulation rates were as much as 200 km(3)/ky in some of the type B clinothems. Clinothem Set 2, showing ascending shelf-edge trajectory, records an aggradational stacking coupled with a retreat of the river-entry points with benthic fauna assemblages that reflect the influence of peaks in freshwater discharge. Whereas Clinothem Set 1 developed under perturbations of river supply linked to the multi-scale waxing and waning of glaciers during an interval dominated by eustatic fall, Clinothem Set 2 reflects the main thawing of glaciers concomitant to the first phase of the eustatic rise. From a sequence stratigraphic perspective, Clinothem Set 1 is interpreted as staked high-frequency sequences, while Clinothem Set 2 represents a stack of high-frequency parasequences. The high-resolution age control from boreholes and seismic data enabled us to relate stratal character to independently constrained environmental proxies: this revealed how the evolution of a shelf-edge system intricately convolves the influences of both global (eustacy) and regional (climate-driven supply fluctuations) controls, both at sub-Milankovitch scales. Finally, the thickness, geometry, and stacking patterns of the centennial to millennial clinothems of the PRLW vary in systematic ways resulting in geometries that closely resemble those of ancient shelf-edge systems, and offering the PRLW as a sub-modern analogue. Our observations also reinforce the focus of the classic sequence-stratigraphic approach on analyzing surfaces and their geometric relations and not on time duration or formation mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available