4.6 Article

Role of sortase in Streptococcus mutans under the effect of nicotine

Journal

INTERNATIONAL JOURNAL OF ORAL SCIENCE
Volume 5, Issue 4, Pages 206-211

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ijos.2013.86

Keywords

dental caries; metabolism; nicotine; sortase A; Streptococcus mutans

Funding

  1. NIH [HL098960, DE020614]
  2. Indiana University Purdue University Indianapolis Tobacco Cessation and Biobehavioral Group (RLG)
  3. Open Fund of State Key Laboratory of Oral Diseases, Sichuan University

Ask authors/readers for more resources

Streptococcus mutans is a common Gram-positive bacterium and plays a significant role in dental caries. Tobacco and/or nicotine have documented effects on S. mutans growth and colonization. Sortase A is used by many Gram-positive bacteria, including S. mutans, to facilitate the insertion of certain cell surface proteins, containing an LPXTGX motif such as antigen I/II. This study examined the effect of nicotine on the function of sortase A to control the physiology and growth of S. mutans using wild-type S. mutans NG8, and its isogenic sortase-defective and -complemented strains. Briefly, the strains were treated with increasing amounts of nicotine in planktonic growth, biofilm metabolism, and sucrose-induced and saliva-induced antigen I/II-dependent biofilm formation assays. The strains exhibited no significant differences with different concentrations of nicotine in planktonic growth assays. However, they had significantly increased (P <= 0.05) biofilm metabolic activity (2- to 3-fold increase) as the concentration of nicotine increased. Furthermore, the sortase-defective strain was more sensitive metabolically to nicotine than the wild-type or sortase-complemented strains. All strains had significantly increased sucrose-induced biofilm formation (2- to 3-fold increase) as a result of increasing concentrations of nicotine. However, the sortase-defective strain was not able to make as much sucrose- and saliva-induced biofilm as the wild-type NG8 did with increasing nicotine concentrations. These results indicated that nicotine increased metabolic activity and sucrose-induced biofilm formation. The saliva-induced biofilm formation assay and qPCR data suggested that antigen I/II was upregulated with nicotine but biofilm was not able to be formed as much as wild-type NG8 without functional sortase A.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available