4.6 Article

Triarylboron Anchored Luminescent Probes: Selective Detection and Imaging of Thiophenols in the Intracellular Environment

Journal

LANGMUIR
Volume 34, Issue 28, Pages 8170-8177

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b01036

Keywords

-

Funding

  1. Science and Engineering Board (SERB), New Delhi, India
  2. IISc

Ask authors/readers for more resources

The advances in boron incorporated organics have captured overwhelming interest on account of their outstanding properties and promising applications in various fields. Mostly, triarylborane compounds (TAB) are exploited as sensors of F- and CN- anions at the expense of the intrinsic Lewis acidic nature of boron. New molecular probes 1 and 2 for detection of toxic thiophenol were designed by conjugating highly fluorescent borylanilines with the luminescent quencher 2,4-dinitrobenzene based sulfonamides (DNBS), wherein the electrOphilicity of the DNBS moiety has been modulated by fine-tuning the intrinsic Lewis acidity of boron. The interplay between PET (photoinduced electron transfer) and ICT have been employed for developing the TAB tethered turn-on fluorescent sensor for thiophenol with high selectivity for the first time. The newly developed probes showed very fast response toward thiophenol (within similar to 5 min) with limits of detection (LOD) lying in the micromolar range, clearly pointing to their potential. Further, compounds 1 and 2 were explored for detecting thiophenol in the intracellular environment by discriminating biothiols. DFT and TD-DFT calculations were performed to support the sensing mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available