4.6 Article

Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers

Journal

LANGMUIR
Volume 34, Issue 17, Pages 5149-5158

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b00625

Keywords

-

Ask authors/readers for more resources

The spreading and rebound patterns of low-viscous droplets upon impacting spherical solid surfaces are investigated numerically. The studied cases consider a droplet impinging onto hydrophobic and superhydrophobic surfaces with various parameters varied throughout the study, and their effects on the postimpingement behavior are discussed. These parameters include impact Weber number (through varying the surface tension and impingement velocity), the size ratio of the droplet to the solid surface, and the surface contact angle. According to the findings, the maximum spreading diameter increases with the impact velocity, with an increase of the sphere diameter, with a lower surface wettability, and with a lower surface tension. Typical outcomes of the impact include (1) complete rebound, (2) splash, and (3) a final deposition stage after a series of spreading and recoiling phases. Finally, a novel, practical model is proposed, which can reasonably predict the maximum deformation of low Reynolds number impact of droplets onto hydrophobic or superhydrophobic spherical solid surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available