4.6 Article

Optimizing the Binding Energy of the Surfactant to Iron Oxide Yields Truly Monodisperse Nanoparticles

Journal

LANGMUIR
Volume 34, Issue 22, Pages 6582-6590

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b01337

Keywords

-

Funding

  1. Alexander von Humboldt Foundation

Ask authors/readers for more resources

Despite the great progress in the synthesis of iron oxide nanoparticles (NPs) using a thermal decomposition method, the production of NPs with low polydispersity index is still challenging. In a thermal decomposition synthesis, oleic acid (OAC) and oleylamine (OAM) are used as surfactants. The surfactants bind to the growth species, thereby controlling the reaction kinetics and hence playing a critical role in the final size and size distribution of the NPs. Fmding an optimum molar ratio between the surfactants oleic OAC/OAM is therefore crucial. A systematic experimental and theoretical study, however, on the role of the surfactant ratio is still missing. Here, we present a detailed experimental study on the role of the surfactant ratio in size distribution. We found an optimum OAC/OAM ratio of 3 at which the synthesis yielded truly monodisperse (polydispersity less than 7%) iron oxide NPs without employing any post synthesis size-selective procedures. We performed molecular dynamics simulations and showed that the binding energy of oleate to the NP is maximized at an OAC/OAM ratio of 3. The optimum OAC/ OAM ratio of 3 is allowed for the control of the NP size with nanometer precision by simply changing the reaction heating rate. The optimum OAC/OAM ratio has no influence on the crystallinity and the superparamagnetic behavior of the Fe3O4 NPs and therefore can be adopted for the scaled-up production of size-controlled monodisperse Fe3O4 NPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available