4.7 Article

Trend and spatiotemporal distribution of fatal landslides triggered by non-seismic effects in China

Journal

LANDSLIDES
Volume 15, Issue 8, Pages 1663-1674

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10346-018-1007-z

Keywords

Fatal landslides; Trend; Spatiotemporal distribution; Socio-economic significance; China

Funding

  1. National Natural Science Foundation of China [41402240]
  2. Fundamental Research Funds for the Central Universities [lzujbky-2017-k19]

Ask authors/readers for more resources

A large number of slope movements occur in China annually. Especially, fatal landslides are the most hazardous, causing serious fatalities and significant socio-economic losses. In this study, we collected data on fatal landslides triggered by non-seismic effects from China's geological environment information site and Ministry of Natural Resources of China for the period 2004-2016. Then, we carried out a statistical analysis of the data to explore the trend and spatiotemporal distribution of the fatal landslides, as well as the distribution of its losses in economic and fatality terms. In the studied period, a total of 4718 deaths were recorded as resulting from 463 landslide events. It represents a frequency of 36 events and an average of 363 deaths every year. Also, an increasing trend of such landslide is observed in the period 2011-2016 with hazard record improvement. But its economic loss has a decreasing proportion of all recorded non-seismic geohazard loss for this period. Even so, the total economic loss in the studied period is still enormous at $981.29 million. The spatial distribution of fatal landslides shows intensive clusters in southwestern and southern China due to the possible distinctive geological environment and precipitation conditions. The temporal distribution reveals significant association with the rainy season, with the largest quantity of events occurring between June and September. Among all the collected landslides during the studied period, 94.2% are associated with rainfall. This research gives a comprehensive recognition of fatal landslide damage and provides baseline information for landslide prevention and mitigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available