4.1 Article

Nanostructured and nanopatterned gold surfaces: application to the surface-enhanced Raman spectroscopy

Journal

GOLD BULLETIN
Volume 46, Issue 4, Pages 283-290

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13404-013-0127-4

Keywords

Surface-enhanced Raman scattering; SERS; Gold nanoparticles; Nanolithography

Ask authors/readers for more resources

Surface-enhanced Raman spectroscopy (SERS) has enormous potential for a range of applications where high sensitivity needs to be combined with good discrimination between molecular targets. However, the SERS technique has trouble finding its industrial development, as was the case with the surface plasmon resonance technology. The main reason is the difficulty to produce stable, reproducible, and highly efficient substrates for quantitative measurements. In this paper, we report a method to obtain two-dimensional regular nanopatterns of gold nanoparticles (AuNPs). The resulting patterns were evaluated by SERS. Our bottom-up strategy was divided into two steps: (a) nanopatterning of the substrate by e-beam lithography and (b) electrostatic adsorption of AuNPs on functionalized substrates. This approach enabled us to highlight the optimal conditions to obtain monolayer, rows, or ring of AuNPs, with homogeneous distribution and high density (800 AuNPs/mu m(2)). The nanostructure distributions on the substrates were displayed by scanning electron microscopy and atomic force microscopy images. Optical properties of our nanostructures were characterized by visible extinction spectra and by the measured enhancements of Raman scattering. Finally, we tried to demonstrate experimentally that, to observe a significant enhancement of SERS, the gold diffusers must be extremely closer. If electron beam lithography is a very attractive technique to perform reproducible SERS substrates, the realization of pattern needs a very high resolution, with distances between nanostructures probably of less than 20 nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available