4.7 Article

Lysyl oxidase like-2 contributes to renal fibrosis in Col4α3/Alport mice

Journal

KIDNEY INTERNATIONAL
Volume 94, Issue 2, Pages 303-314

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.kint.2018.02.024

Keywords

Alport syndrome; fibrosis; glomerulonephritis; lysyl oxidase

Funding

  1. PharmAkea, Inc.

Ask authors/readers for more resources

Lysyl oxidase like-2 (LOXL2) is an amine oxidase with both intracellular and extracellular functions. Extracellularly, LOXL2 promotes collagen and elastin crosslinking, whereas intracellularly, LOXL2 has been reported to modify histone H3, stabilize SNAIL, and reduce cell polarity. Although LOXL2 promotes liver and lung fibrosis, little is known regarding its role in renal fibrosis. Here we determine whether LOXL2 influences kidney disease in COL4A3 (-/-) Alport mice. These mice were treated with a small molecule inhibitor selective for LOXL2 or with vehicle and assessed for glomerular sclerosis and fibrosis, albuminuria, blood urea nitrogen, lifespan, pro-fibrotic gene expression and ultrastructure of the glomerular basement membrane. Laminin alpha 2 deposition in the glomerular basement membrane and mesangial filopodial invasion of the glomerular capillaries were also assessed. LOXL2 inhibition significantly reduced interstitial fibrosis and mRNA expression of MMP-2, MMP-9, TGF-b1, and TNF-alpha. LOXL2 inhibitor treatment also reduced glomerulosclerosis, expression of MMP-10, MMP-12, and MCP-1 mRNA in glomeruli, and decreased albuminuria and blood urea nitrogen. Mesangial filopodial invasion of the capillary tufts was blunted, as was laminin a2 deposition in the glomerular basement membrane, and glomerular basement membrane ultrastructure was normalized. There was no effect on lifespan. Thus, LOXL2 plays an important role in promoting both glomerular and interstitial pathogenesis associated with Alport syndrome in mice. Other etiologies of chronic kidney disease are implicated with our observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available