3.8 Proceedings Paper

MOEMS Pressure Sensors for Geothermal Well Monitoring

Journal

MOEMS AND MINIATURIZED SYSTEMS XII
Volume 8616, Issue -, Pages -

Publisher

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2013141

Keywords

MOEMS; Geothermal; pressure sensor; harsh environment; MEMS resonator

Funding

  1. Department of Energy [DE-EE0002787]

Ask authors/readers for more resources

The technology for enhanced geothermal systems (EGS), in which fractures connecting deep underground wells are deliberately formed through high pressure stimulation for energy generation, is projected to enormously expand the available reserves of geothermal energy in the U.S. EGS could provide up to 100,000 MWe within the U.S. by the next 50 years. Pressure measurements, in particular, are important for determining the state of the fluid, i.e., liquid or steam, the fluid flow, and the effectiveness of the well stimulation. However, it has been especially difficult to accurately measure pressure at temperatures above similar to 200 degrees C at a distance of 10 km below ground. MEMS technology has been employed for many years for extremely accurate pressure measurements through electrical readout of a MEMS fabricated resonator. By combining optical readout and drive at the end of a fiber optical cable with a MEMS resonator, it is possible to employ these highly accurate sensors within the harsh environment of a geothermal well. Sensor prototypes based on two beam and four beam resonator designs have been designed, fabricated and characterized for pressure response and accuracy. Resonant frequencies of the sensors vary between similar to 15 kHz and 90 kHz depending on sensor design, and laboratory measurements yielded sensitivities of frequency variation with external pressure of 0.9-2.2 Hz/psi. An opto-electronic feedback loop was designed and implemented for the field test. The sensors were packaged and deployed as part of a cable that was deployed at a geothermal well over the course of 2 weeks. Error of the sensor versus the reference gage was 1.2% over the duration of the test. There is a high likelihood that this error is a result of hydrogen darkening of the fiber that is reducing the temperature of the resonator and, if corrected, could reduce the error to less than 0.01%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available