4.5 Article

Bacterial strains isolated from cedar wood improve the mycelial growth and morphology of white rot fungus Phlebia brevispora on agar and liquid medium

Journal

JOURNAL OF WOOD SCIENCE
Volume 64, Issue 4, Pages 444-450

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s10086-018-1723-y

Keywords

White rot fungus; Phlebia brevispora; Growth enhancement; Growth-promoting bacteria

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [23688041, 15K14905]

Ask authors/readers for more resources

Growth enhancement of white rot fungus Phlebia brevispora TN3F by two bacterial strains TN3W-8 and TN3W-14 which showed high identity with genus Pseudomonas and Enterobacter, respectively, was investigated in liquid and solid media at different glucose concentrations. The white rot fungus P. brevispora TN3F and the bacterial strains were isolated from same white rot-decayed cedar wood from the Tano Forest Science Station at University of Miyazaki. Confrontational assay between the fungus and the bacterial strains revealed a fungal growth enhancement phenomenon, in the direction of the bacterial cells, even without direct contact. This enhancement increased with decrease of glucose concentration, 0.5% glucose offering comparatively the most mycelial growth. In potato extract (PE) medium at 0.5% glucose concentration, along with mycelial growth enhancement and morphological change of P. brevispora TN3F, growth and morphological enhancement of fungus TMIC33929, another strain of P. brevispora, was achieved by the bacterial strain TN3W-14, although TMIC33929 originated from a different environment. Outside few reports of a positive interaction between white rot fungi and other microorganisms, this is a first report of such positive interaction in liquid medium. Furthermore, this also is the first report of a single bacterium having potential to positively affect mycelia growth of different strains of a white rot fungus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available