3.8 Proceedings Paper

Multi-target Tracking by Lagrangian Relaxation to Min-Cost Network Flow

Publisher

IEEE
DOI: 10.1109/CVPR.2013.241

Keywords

-

Funding

  1. Direct For Computer & Info Scie & Enginr
  2. Div Of Information & Intelligent Systems [1218729] Funding Source: National Science Foundation

Ask authors/readers for more resources

We propose a method for global multi-target tracking that can incorporate higher-order track smoothness constraints such as constant velocity. Our problem formulation readily lends itself to path estimation in a trellis graph, but unlike previous methods, each node in our network represents a candidate pair of matching observations between consecutive frames. Extra constraints on binary flow variables in the graph result in a problem that can no longer be solved by min-cost network flow. We therefore propose an iterative solution method that relaxes these extra constraints using Lagrangian relaxation, resulting in a series of problems that ARE solvable by min-cost flow, and that progressively improve towards a high-quality solution to our original optimization problem. We present experimental results showing that our method outperforms the standard network-flow formulation as well as other recent algorithms that attempt to incorporate higher-order smoothness constraints.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available