4.4 Article

Generalized differential quadrature nonlinear buckling analysis of smart SMA/FG laminated beam resting on nonlinear elastic medium under thermal loading

Journal

JOURNAL OF THERMAL STRESSES
Volume 41, Issue 5, Pages 583-607

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01495739.2017.1408048

Keywords

Generalized differential quadrature method; nonlinear foundation; nonlinear thermal buckling; SMA/FG beam; smart laminated composite

Ask authors/readers for more resources

The nonlinear thermal buckling analysis of functionally graded (FG) beam integrated with shape memory alloy (SMA) layer(s), with different lay-up configurations and supported on a nonlinear elastic foundation, has been investigated. The FG layer is graded through the beam thickness direction and thermomechanical properties are assumed to be temperature dependent. The Brinson one-dimensional constitutive law are used to model the characteristics of SMA. The von Karman strain-displacement fields with the Timoshenko beam theory are applied to the Hamilton's principle to derive the set of nonlinear equilibrium equations. Generalized differential quadrature method along with direct iterative scheme is utilized to discretize and solve the nonlinear equilibrium equations. The accuracy of proposed model is compared and validated with previous research in literature. The detailed parametric study has been performed to investigate the influence of geometrical, material, and some other key parameters on the nonlinear thermal buckling solutions. The results show that selecting the proper lay-up is of great importance because the type of SMA/FG lay-up can considerably affect the nonlinear buckling solutions. Moreover, adequate application of SMA layers in a proper lay-up configuration significantly postpones the thermal buckling temperature of the beam.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available