4.6 Article

Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2017.08.034

Keywords

Biomimetic femoral stem; Metallic lattice structure; Additive manufacturing; Digital image correlation; Finite element analysis; Hip prosthesis

Funding

  1. Fonds de developpement de l'ETS (FDETS) [862137]
  2. Fonds de recherche du Quebec - Nature et Technologies (FRQNT) [199265]
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Background: The current total hip prostheses with dense femoral stems are considerably stiffer than the host bones, which leads to such long-term complications as aseptic loosening, and eventually, the need for a revision. Consequently, the lifetime of the implantation does not match the lifetime expectation of young patients. Method: A femoral stem design featuring a porous structure is proposed to lower its stiffness and allow bone tissue ingrowth. The porous structure is based on a diamond cubic lattice in which the pore size and the strut thickness are selected to meet the biomechanical requirements of the strength and the bone ingrowth. A porous stem and its fully dense counterpart are produced by laser powder-bed fusion using Ti-6Al-4V alloy. To evaluate the stiffness reduction, static testing based on the ISO standard 7206-4 is performed. The experimental results recorded by digital image correlation are analyzed and compared to the numerical model. Results & conclusions: The numerical and experimental force-displacement characteristics of the porous stem show a 31% lower stiffness as compared to that of its dense counterpart. Moreover, the correlation analysis of the total displacement and equivalent strain fields allows the preliminary validation of the numerical model of the porous stem. Finally, the analysis of the surface-to-volume and the strength-to-stiffness ratios of diamond lattice structures allow the assessment of their potential as biomimetic constructs for load-bearing orthopaedic implants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available