4.7 Article

Trajectory tracking for a quadrotor under wind perturbations: sliding mode control with state-dependent gains

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jfranklin.2018.04.042

Keywords

-

Funding

  1. region Hauts-de-France
  2. ONERA

Ask authors/readers for more resources

The problem of position tracking of a mini drone subject to wind perturbations is investigated. The solution is based on a detailed unmanned aerial vehicle (UAV) model, with aerodynamic coefficients and external disturbance components, which is introduced in order to better represent the impact of the wind field. Then, upper bounds of wind-induced disturbances are characterized, which allow a sliding mode control (SMC) technique to be applied with guaranteed convergence properties. The peculiarity of the considered case is that the disturbance upper bounds depend on the control amplitude itself (i.e. the system is nonlinear in control), which leads to a new procedure for the control tuning presented in the paper. The last part of the paper is dedicated to the analysis and reduction of chattering effects, as well as investigation of rotor dynamics issues. Conventional SMC with constant gains, proposed first order SMC, and proposed quasi-continuous SMC are compared. Nonlinear UAV simulator, validated through in-door experiments, is used to demonstrate the effectiveness of the proposed controls. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available