4.6 Article

Enhancement of Oxygen Transfer by Design Nickel Foam Electrode for Zinc-Air Battery

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 165, Issue 5, Pages A809-A818

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0361805jes

Keywords

-

Funding

  1. National Natural Science Foundation of China [21276134, 21776154]
  2. National 863 Project [2012AA051203]

Ask authors/readers for more resources

To develop a long-lifetime metal-air battery, oxygen reduction electrodes with improved mass-transfer routes are designed by adjusting the mass ratio of the hydrophobic polytetrafluoroethylene (PTFE) to carbon nanotubes (CNTs) in nickel foam. The oxygen reduction catalyst MnO2 is grown on the nickel foam using a hydrothermal method. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analysis are employed to characterize the morphology, crystal structure, chemical composition, and pore structure of the electrodes, respectively. The air electrodes are evaluated using constant-current tests and electrochemical impedance spectroscopy. A PTFE: CNT mass ratio of 1:4-2:1 with 3-mm-thick nickel foam yields the optimal performance due to the balance of hydrophilicity and hydrophobicity. When the electrodes are applied in primary zinc-air batteries, the electrode with a PTFE: CNT mass ratio of 1:4 achieves the maximum power density of 95.7 mW cm(-2) with a discharge voltage of 0.8 V at 100 mA cm(-2), and completes stable discharge for over 14400 s at 20 mA cm(-2). (C) The Author(s) 2018. Published by ECS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available