4.6 Article

Citric Acid Based Pre-SEI for Improvement of Silicon Electrodes in Lithium Ion Batteries

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 165, Issue 10, Pages A1991-A1996

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0161810jes

Keywords

-

Funding

  1. Department of Energy Office of Basic Energy Sciences EPSCoR Implementation award [DE-SC0007074]

Ask authors/readers for more resources

Silicon electrodes are of interest to the lithium ion battery industry due to high gravimetric capacity (similar to 3580 mAh/g), natural abundance, and low toxicity. However, the process of alloying and dealloying during cell cycling, causes the silicon particles to undergo a dramatic volume change of approximately 280% which leads to electrolyte consumption, pulverization of the electrode, and poor cycling. In this study, the formation of an ex-situ artificial SEI on the silicon nanoparticles with citric acid has been investigated. Citric acid (CA) which was previously used as a binder for silicon electrodes was used to modify the surface of the nanoparticles to generate an artificial SEI, which could inhibit electrolyte decomposition on the surface of the silicon nanoparticles. The results suggest improved capacity retention of similar to 60% after 50 cycles for the surface modified silicon electrodes compared to 45% with the surface unmodified electrode. Similar improvements in capacity retention are observed upon citric acid surface modification for silicon graphite composite/LiCoO2 cells. (C) The Author(s) 2018. Published by ECS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available