3.8 Proceedings Paper

Nanoclustered Gold: A Promising Green Catalysts for the Oxidation of Alkyl Substituted Benzenes

Journal

MICRO/NANO SCIENCE AND ENGINEERING
Volume 925, Issue -, Pages 38-42

Publisher

TRANS TECH PUBLICATIONS LTD
DOI: 10.4028/www.scientific.net/AMR.925.38

Keywords

Gold-skeleton; green catalyst; Mesoporous silica; Catalytic oxidation; Nanoclustered catalysts

Ask authors/readers for more resources

Catalytic oxidation of alkyl substituted benzenes is an essential route for the synthesis of a number of important chemicals, perfumes, drugs and pharmaceuticals. The oxidation products of ethyl benzene are important precursors for a wide range of pharmaceuticals and synthetic materials. Acetophenone and 1-phenylethanol are two oxidation products of ethyl benzene which are the precursors of optically active alcohol, benzalacetophanones, hydrazones and so on. However, the oxidations of alkyl substituted benzenes have been remaining a challenging task. This is because of the limitations of an appropriate catalyst and requirement of corrosive chemical treatments (potassium permanganate/dichromate and ammonium cerium nitrate) which are hazardous and environmentally unfriendly. The current industrial practice in the oxidation of ethyl benzene unfortunately involves high temperature thermal autoxidation in the absence of catalysts. Although few catalysts have been tested for the oxidation of ethyl benzene, many of them found to be inefficient. For example, cobalt (II) oxide-immobilized on mesoporous silica (Co/SBA-15) was used to catalyze oxidation of alkyl benzene at high temperature (125-150 degrees C) but only 70% conversion was obtained after prolong treatment at 150 degrees C. Additionally, the catalyst formed mixed uncontrolled oxidation products like 1-phenylethyl hydro peroxide, benzoic acid, acetophenone and phenyl ethanol. Carbon/silica/metal oxide supported nanoporous gold is a promising green catalyst for heterogenous molecular transformation. This is because of their three dimensional open pore network structures, high surface to volume ratio, high reusability, distinct optolectronic and physio-chemical properties. Mesoporous carbon/silica/metal oxide thin film supports provide increase dispersion of metal nanocatalysts and facilitate transport of molecules, ions or electrons through the nanopores/nanochannels, enhancing product yields with minimum cost and time. This paper has reviewed various gold-skeleton green catalysts and their preparation and mechanistic schemes for the selective oxidation of alkyl substituted benzenes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available