4.8 Article

Hydronium-Induced Switching between CO2 Electroreduction Pathways

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 140, Issue 11, Pages 3833-3837

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b13542

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. Government of Ontario through the Ontario Research Fund Research Excellence program
  3. Southern Ontario Smart Computing Innovation Platform (SOSCIP)
  4. Federal Economic Development Agency of Southern Ontario
  5. Province of Ontario
  6. IBM Canada Ltd.
  7. Ontario Centres of Excellence
  8. Mitacs
  9. Ontario academic member institutions
  10. FRQNT
  11. NSERC
  12. Hatch
  13. Government of Ontario
  14. Government of Canada

Ask authors/readers for more resources

Over a broad range of operating conditions, many CO2 electroreduction catalysts can maintain selectivity toward certain reduction products, leading to materials and surfaces being categorized according to their products; here we ask, is product selectivity truly a property of the catalyst? Silver is among the best electrocatalysts for CO in aqueous electrolytes, where it reaches near-unity selectivity. We consider the hydro-genations of the oxygen and carbon atoms via the two proton-coupled-electron-transfer processes as chief determinants of product selectivity; and find using density functional theory (DFT) that the hydronium (H3O+) intermediate plays a key role in the first oxygen hydrogenation step and lowers the activation energy barrier for CO formation. When this hydronium influence is removed, the activation energy barrier for oxygen hydrogenation increases significantly, and the barrier for carbon hydrogenation is reduced. These effects make the formate reaction pathway more favorable than CO. Experimentally, we then carry out CO2 reduction in highly concentrated potassium hydroxide (KOH), limiting the hydronium concentration in the aqueous electrolyte. The product selectivity of a silver catalyst switches from entirely CO under neutral conditions to over 50% formate in the alkaline environment. The simulated and experimentally observed selectivity shift provides new insights into the role of hydronium on CO2 electroreduction processes and the ability for electrolyte manipulation to directly influence transition state (TS) kinetics, altering favored CO2 reaction pathways. We argue that selectivity should be considered less of an intrinsic catalyst property, and rather a combined product of the catalyst and reaction environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available