4.7 Article

Orientation of cosmic web filaments with respect to the underlying velocity field

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 437, Issue 1, Pages L11-L15

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnrasl/slt130

Keywords

methods: numerical; methods: statistical; large-scale structure of Universe

Funding

  1. ESF [MJD272, SF0060067s08]
  2. Deutsche Forschungs Gemeinschaft
  3. Israel Science Foundation [1013/12]

Ask authors/readers for more resources

The large-scale structure of the Universe is characterized by a web-like structure made of voids, sheets, filaments and knots. The structure of this so-called cosmic web is dictated by the local velocity shear tensor. In particular, the local direction of a filament should be strongly aligned with (e) over cap (3), the eigenvector associated with the smallest eigenvalue of the tensor. That conjecture is tested here on the basis of a cosmological simulation. The cosmic web delineated by the halo distribution is probed by a marked point process with interactions (the Bisous model), detecting filaments directly from the halo distribution (P-web). The detected P-web filaments are found to be strongly aligned with the local (e) over cap (3): the alignment is within 30 degrees for similar to 80 per cent of the elements. This indicates that large-scale filaments defined purely from the distribution of haloes carry more than just morphological information, although the Bisous model does not make any prior assumption on the underlying shear tensor. The P-web filaments are also compared to the structure revealed from the velocity shear tensor itself (V-web). In the densest regions, the P-and V-web filaments overlap well (90 per cent), whereas in lower density regions, the P-web filaments preferentially mark sheets in the V-web.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available