4.7 Article

A model for the sound absorption coefficient of multi-layered elastic micro-perforated plates

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 430, Issue -, Pages 75-92

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2018.05.036

Keywords

Micro-perforated plate (MPP); Sound absorption coefficient; Elastic thin plate

Funding

  1. Korea Institute of Machinery and Materials

Ask authors/readers for more resources

In this paper, a model for the sound absorption coefficient of multi-layered elastic micro-perforated plates (MPPs) in an impedance tube is developed using an analytical approach. Under the plane wave condition, a low-frequency solution is derived by including the symmetric modes of the plate vibration and the sound pressure field. The sound absorption model derived in this study can handle multi-layered structures composed of any combination of thin elastic plates with or without micro-perforations and rigid MPPs. The effects of the parameters of the plate thickness, hole diameter, perforation ratio, cavity depth, and damping on the sound absorption capabilities are described. For a single MPP, when the perforation ratio is very small, it is observed that the combined effect of the elastic behavior and micro-perforation results in a significant increase of the sound absorption coefficient compared to that of a rigid MPP. However, when the perforation ratio is order of a few percent, the effect of the elastic behavior is negligible compared to that of micro-perforations. Some guidelines for selecting optimum parameters to achieve the maximum average sound absorption coefficient for a given frequency band are discussed for double- and triple-elastic MPPs. It is important to ensure that the perforation ratio of the last MPP is small such that the elastic behavior is dominant, while for the first MPP (and for the second MPP in the triple configuration), the elastic behavior should not be dominant. In addition, maintaining equal cavity depths is beneficial for a high average sound absorption coefficient. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available