4.6 Article

The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 596, Issue 8, Pages 1485-1499

Publisher

WILEY
DOI: 10.1113/JP274885

Keywords

synaptic vesicles; replenishment; active zone

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) via the Collaborative Research Centre 1134
  2. Deutsche Forschungsgemeinschaft (DFG) via the Priority Program 1608

Ask authors/readers for more resources

Synaptic vesicles (SVs) are released at the active zone (AZ), a specialized region of the presynaptic plasma membrane organized by a highly interconnected network of multidomain proteins called the cytomatrix of the active zone (CAZ). Two core components of the CAZ are the large, highly homologous scaffolding proteins Bassoon and Piccolo, whose function is not well understood. To investigate their role in synaptic transmission, we established the small hairpin RNA (shRNA)-mediated in vivo knockdown (KD) of Bassoon and Piccolo at the rat calyx of Held synapse. KD of Bassoon and Piccolo, separately or simultaneously, did not affect basic SV release. However, short-term depression (STD) was prominently increased by the KD of Bassoon, whereas KD of Piccolo only had a minor effect. The observed alterations in STD were readily explained by reduced SV replenishment in synapses deficient in either of the proteins. Thus, the regulation of SV refilling during ongoing synaptic activity is a shared function of Bassoon and Piccolo, although Bassoon appears to be more efficient. Moreover, we observed the recruitment of slowly-releasing SVs of the readily-releasable pool (RRP), which are normally not available for action potential-induced release, during high-frequency stimulation in Piccolo-deficient calyces. Therefore, the results obtained in the present study suggest a novel and specific role for Piccolo in the organization of the subpools of the RRP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available