4.5 Article

Optical absorption and electrical properties of MPc (M =Fe, Cu, Zn)-TCNQ interfaces for optoelectronic applications

Journal

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
Volume 115, Issue -, Pages 373-380

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2018.01.005

Keywords

Thin films; Chemical synthesis; Optical properties; Electrical properties

Funding

  1. Anahuac Mexico University [NNAIASEVM16070616]

Ask authors/readers for more resources

This research is related to the growth and characterization of doped molecular semiconductor metallophthalocyanine-tetracyanoquinodimethane (MPc-TCNQ) films, with M = Fe, Zn, Cu. FT-IR and Raman spectroscopies were employed to study the chemical interactions taking place in the MPc-TCNQ films. XRD was carried out to determine the crystalline structure present in the samples, due to the facility of the MPcs to be in alpha and/or beta phases. The thin films were analized by SEM and UV-vis spectroscopy in order to study their morphological and optical properties. The absorption spectra recorded in the UV-Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The absorption coefficient (a) and photon energy (h nu) were calculated from the UV-vis spectra, to in turn determine the optic activation energy in each film and its semiconductor behavior. The values obtained for direct transitions due to the crystallinity of the films were: 1.2, 1.4 and 2 eV for FePc-TCNQ (MMFe), ZnPc-TCNQ (MMZn) and CuPc-TCNQ (MMCu), respectively. Additionally, I-V characteristics have been obtained from fabricated glass/ITO/MM/Ag devices using ohmic contacts both after annealing. The electrical properties of the devices, e.g. carrier mobility and concentration of thermally generated holes, were extracted from the J-V characteristics. The results show that the conduction process is ohmic for the MMZn and MMCu devices, at low voltages, while at high voltages, a space-charge-limited conduction (SCLC) is present. The effect of temperature on conductivity was also measured in these samples and the lower thermal activation energy calculated was 0.37 eV for MMZn. Moreover, it was found that the temperature-dependent electric current is always higher for the MMZn device and suggests a semiconductor-like behavior with an important conductivity of the order of 10(3) S cm(-1). Anyhow, in terms not only of electric properties, but also of optic behavior, the results suggest that all three devices manufactured, MMFe, MMCu and MMZn, are of potential use in optoelectronics. The doping effect of TCNQ favors the electronic transport, most likely due to the formation of conduction channels caused by the anisotropy induced by the dopant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available