4.6 Article

Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 122, Issue 31, Pages 17575-17585

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b02913

Keywords

-

Funding

  1. Office of Naval Research [N00014-16-1-2580, N00014-10-1-0944]
  2. Toyota Research Institute through the Accelerated Materials Design and Discovery program

Ask authors/readers for more resources

The recent successes of the Materials Genome Initiative have opened up new opportunities for data-centricinformatics approaches in several subfields of materials research, including in polymer science and engineering. Polymers, being inexpensive and possessing a broad range of tunable properties, are widespread in many technological applications. The vast chemical and morphological complexity of polymers though gives rise to challenges in the rational discovery of new materials for specific applications. The nascent field of polymer informatics seeks to provide tools and pathways for accelerated property prediction (and materials design) via surrogate machine learning models built on reliable past data. We have carefully accumulated a data set of organic polymers whose properties were obtained either computationally (bandgap, dielectric constant, refractive index, and atomization energy) or experimentally (glass transition temperature, solubility parameter, and density). A fingerprinting scheme that captures atomistic to morphological structural features was developed to numerically represent the polymers. Machine learning models were then trained by mapping the fingerprints (or features) to properties. Once developed, these models can rapidly predict properties of new polymers (within the same chemical class as the parent data set) and can also provide uncertainties underlying the predictions. Since different properties depend on different length-scale features, the prediction models were built on an optimized set of features for each individual property. Furthermore, these models are incorporated in a user-friendly online platform named Polymer Genome (www.polymergenome.org). Systematic and progressive expansion of both chemical and property spaces are planned to extend the applicability of Polymer Genome to a wide range of technological domains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available