4.6 Article

Relating Photoelectrochemistry and Wettability of Sputtered Cu- and N-Doped TiO2 Thin Films via an Integrated Approach

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 122, Issue 23, Pages 12369-12376

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b03650

Keywords

-

Funding

  1. Masdar Institute of Science and Technology part of Khalifa University of Science and Technology [SSG2017-000007]

Ask authors/readers for more resources

We present here an integrated study of the photoelectrochemical and hydrophilic properties of sputtered TiO2 thin films, enhanced by means of nitrogen (N) and copper (Cu) doping. We investigated the effect that doping has on both photoelectrochemical efficiency and surface properties by employing a variety of techniques spanning from impedance electrochemical impedance spectroscopy to static contact angle and atomic force microscope (AFM) force spectroscopy before and after UV irradiation through a comprehensive approach able to connect photelectrochemical and hydrophilic performance. Namely, Cu doping was observed to worsen TiO2 photoelectrochemical efficiency, unlike N-doping, which instead improved it, whereas both doping enhanced the surface chemistry. Both doping resulted in anodic shift of the flat band potential and in an increase in the donor density with the occurrence of surface defects beneficial for the separation of charge carriers in N-TiO2 on one side, and more recombination centers in Cu-TiO2 on the other. On the other hand, macroscopic wettability characterization indicated that Cu-TiO2 and N-TiO2 had a much lower contact angle than TiO2 (static contact angle approximate to 20 and 10 degrees for Cu-doped and N-doped films, respectively, as compared to 50 degrees in the bare film) and became superhydrophilic after UV irradiation; AFM corroborated the contact angle data, pointing out that the enhanced hydrophilicity in doped films can be ascribed to an alteration in the surface chemistry because of a greater number of surface defects, such as oxygen vacancies, acting as binding sites for water molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available