4.5 Article

Molecular Dynamic Simulations for the Extraction of Quinoline from Heptane in the Presence of a Low-Cost Phosphonium-Based Deep Eutectic Solvent

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 122, Issue 14, Pages 4006-4015

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.7b10914

Keywords

-

Funding

  1. Department of Science and Technology (DST), Government of India through INSPIRE fellowship program [DST/INSPIRE Fellowship/2015/1E150175]

Ask authors/readers for more resources

The present study aims at the extraction of a polyaromatic hydrocarbon from fuel oils using a novel low-cost deep eutectic solvent (DES). The DES is prepared by mixing the hydrogen bond acceptor (HBA; methyltriphenylphosphonium bromide, MTPB) and hydrogen bond donor (HBD; ethylene glycol) at a molar ratio of 1:4. The liquid-liquid equilibrium is then measured at ambient condition. The dassical molecular dynamic (MD) simulation technique is then employed to investigate and compare the experimental phase behavior of a DES-quinoline-heptane ternary system. For performing the MD simulations, two experimental feed points are considered which gave high selectivity and distribution coefficient values. The interaction energies of different species and the structural properties such as radial distribution functions, average number of hydrogen bonds, and spatial distribution functions (SDFs) are then computed. It is found that the cation within the HBA, namely, MTP, possesses favorable interactions with quinoline when compared to HBD or anion (Br). MTP here acts as a HBA and contributes to the hydrogen bonding with quinoline, which results in higher experimental selectivity values. The calculations of SDFs further reveal the fact that the DES molecules are evenly distributed around the active sites of the quinoline molecule, whereas heptane molecules are found to be distributed around the nonactive sites of the aromatic ring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available