4.6 Review

An overview of experimental designs in HPLC method development and validation

Journal

JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS
Volume 147, Issue -, Pages 590-611

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpba.2017.05.006

Keywords

Chemometry; Screening designs; Optimization designs; Method development/validation; Mathematical modelling; Quality by design; Six sigma

Ask authors/readers for more resources

Chemometric approaches have been increasingly viewed as precious complements to high performance liquid chromatographic practices, since a large number of variables can be simultaneously controlled to achieve the desired separations. Moreover, their applications may efficiently identify and optimize the significant factors to accomplish competent results through limited experimental trials. The present manuscript discusses usefulness of various chemometric approaches in high and ultra performance liquid chromatography for (i) methods development from dissolution studies and sample preparation to detection, considering the progressive substitution of traditional detectors with tandem mass spectrometry instruments and the importance of stability indicating assays (ii) method validation through screening and optimization designs. Choice of appropriate types of experimental designs so as to either screen the most influential factors or optimize the selected factors' combination and the mathematical models in chemometry have been briefly recalled and the advantages of chemometric approaches have been emphasized. The evolution of the design of experiments to the Quality by Design paradigm for method development has been reviewed and the Six Sigma practice as a quality indicator in chromatography has been explained. Chemometric applications and various strategies in chromatographic separations have been described. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available